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Abstract—This report addresses the computational challenges
in hybrid direct collocation (HDC) for multi-step bipedal sys-
tems trajectory optimization. We introduce the Gait Modu-
larization and Optimization Technique (GMOT), which uti-
lizes unit gait trajectories as initialization for multi-step tra-
jectory optimization, leading to significant improvements in
efficacy and efficiency over naive HDC methods. We evaluated
our results against three gaits: bunny hopping, walking, and
running. The animated images and codes are available at
https://github.com/QingquanBao/2DBiped.

Index Terms—Hybrid System, Constrained Direct Collocation,
Bipedal System, Biped Gait

I. INTRODUCTION

Trajectory optimization in bipedal robotics, while progres-
sively maturing, still confronts significant challenges, particu-
larly when utilizing hybrid direct collocation (HDC) methods.
While HDC has demonstrated considerable success in enabling
dynamic and complex locomotion, issues such as initialization
sensitivity, constraint management, and precise gait definition
critically influence the efficiency and outcome of the optimiza-
tion process.

In response to these challenges, this report introduces a
structured and modular approach to Multi-step trajectory op-
timization using collocation, which we call the gait Modu-
larization and Optimization Technique (GMOT). GMOT not
only streamlines the optimization of bipedal gaits but also
significantly improves computational efficiency. We apply
this methodology to three fundamental gaits—bunny hopping,
walking, and running—and provide a comparative analysis
against traditional HDC approaches, showcasing our method’s
superior performance.

Key contributions of this report include the development
of GMOT building upon the DIRCON algorithm [1] and the
identification of empirical best practices. We achieve more
efficient optimization with more realistic biped gaits, offering
practical insights and guidelines for future applications.

II. BACKGROUND

A. Biped Model Setup

Our study focuses on a basic five-joint bipedal model
with actuation in four of the joints, as depicted in Fig.
1. The joint configuration space is denoted as q =
[x, z, θ, q1, q2, q3, q4]

T ∈ R7, representing the biped’s position
and orientation in the plane, along with its internal joint angles.
The actuator input space is defined as u = [u1, u2, u3, u4]

T ∈
R4, corresponding to the torques applied at the four actuated
joints. The complete state space, combining configuration and
velocity, is represented as x = [q,v]T ∈ R14 with v = q̇.

B. Hybrid Trajectory Optimization
In our study, we denote the trajectory of the bipedal

system through a sequence of modes and knot points as
x11, ..., x

1
N1 , ..., x

j
1, ..., x

j
Nj , ..., x

M
NM , where M is the mode

sequence length, j indexes the mode sequence, and N j refers
to the N th knot point within the jth mode. This notation allows
us to describe the state of the system at any given instance
within the hybrid trajectory optimization framework.

Hybrid trajectory optimization integrates the continuous dy-
namics of walking phases with discrete transitions, facilitated
by guards and resets. These transitions enable the biped model
to switch seamlessly between locomotive modes. The guard
function, such as the height of a foot ϕ(q)y = 0, signals the
need for a mode transition, while the reset map updates the
state q and v, according to the impact dynamics:

qj
1 = qj−1

Nj−1

vj
1 = vj−1

Nj−1 +M−1JTΛj−1,
(1)

where M is the mass matrix, J is the Jacobian of the contact
constraints, and Λ represents the impulse due to contact.
C. Contact Constrained Dynamics

The dynamics of the biped are governed by the contact
constraints, which ensure that the feet maintain contact with
the ground. The constraints are mathematically formulated as:

ϕ(q(t)) = 0

ψ(q, v) ≡ dϕ
dt

= J(q)v = 0

α(q, v, u, λ) ≡ d2ϕ
dt2

=
dJ(q)

dt
v + J(q)f̄(x, u, λ) = 0

(2)

To address the complexity of an over-constrained system,
constrained direct collocation is employed to manage the
manifold constraints from the biped’s interaction with the
environment.
D. Constrained Direct Collocation

The optimization problem is structured using constrained
direct collocation (DIRCON) [1], aiming to minimize the
cost function over the trajectory while satisfying the system’s
dynamic and contact constraints:

min
z

ℓf (XN ) + h

N∑
k=1

ℓ(xk, uk)

s.t. 0 = ḡ(xk, uk, λk, xk+1, uk+1, λk+1, λ̄k, γ̄k)

for k = 1, ..., N − 1

0 = ϕ(qk) = ψ(xk) = α(qk, vk, uk, λk)

for k = 1, ..., N

0 ≥ m(z),

(3)
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Fig. 2: GMOT Overview. (a) The workflow in optimizing for a unit gait trajectory. (b) The method
in optimizing for a multi-step trajectory, where the red bold arrow indicates our GMOT method.

where the collocation constraint ensures the continuity and
consistency of the motion between collocation points:

ḡ(xk, uk, λk, xk+1, uk+1, λk+1, λ̄k, γ̄k) =

ẋs(tk + .5h)−
[
vc + J(qc)

T γ̄k
f̄(xc, uc, λ̄k

]
.

(4)

III. METHODS

In this section, we detail our Gait Modularization and
Optimization Technique (GMOT). First, we define three biped
gaits, i.e., walking, running, and bunny hopping. Then, we
introduce the approaches to optimize a unit gait, and finally
solve the multi-step trajectory with the initialization of re-
peated sequential units.

A. Definitions: Unit & Full Trajectory, Mode & Gaits
Unit Trajectory: In the context of a biped system, we

assume that most ideal biped gaits follow some form of
periodic sequence when excluding translational motion. We
define a unit trajectory to be one period in that motion
sequence. In terms of states, we simply define a unit trajectory
to be x11, ..., x

1
N1 .

Multi-step Trajectory: Contrast to the unit trajectory,
which aims to be a minimum repeatable sequence of motion
that defines a gait, we define a multi-step trajectory of gait
α to be a free-form sequence of gait α that moves towards a
distance target. In terms of states, we simply define a multi-
step trajectory to be x11, ..., x

1
N1 , ..., x

j
1, ..., x

j
Nj , ..., x

M
NM .

Mode & Gaits: In the context of hybrid systems, we define
distinct unit modes in a biped system to facilitate further mod-
eling. These modes encapsulate all potential contact dynamics
a biped may encounter:

• Right Stance: right foot contacts the ground while left
foot in the air;

• Left Stance: left foot contacts the ground while right foot
in the air;

• Double Stance: both feet contact the ground;
• Flight Phase: both feet in the air, i.e., no contact con-

straints in this mode.
The well-defined modes enable us to construct gait units

that are intuitive, concise, and optimal for rapid optimization.
The gait unit should satisfy several properties: (1) align with
the human intuitive understanding of gaits; (2) Short and
simple enough for fast optimization. The unit is defined as
a predefined mode sequence based on human prior:

• Walk: [Right Stance, Left Stance],
• Run: [Right Stance, Flight Phase, Left Stance, Flight

Phase],
• Bunny hop: [Double Stance, Flight Phase, Double

Stance].

B. Unit Gaits Optimization

To create a repeatable gait unit, we use the workflow
depicted in Fig. 2. We impose symmetrical initial and final
constraints on x, which we will refer to as x0 and xf

respectively, and use DIRCON to solve for the motion in
between.

For any gait, we would have to design x0 and xf ’s q
component using forward and inverse kinematics, and provide
educated guesses for v. This process can be thought of as
hypothesizing a feasible initial and final constraint and is often
constantly iterated for improvements. We will discuss two
representative gaits for unit gait optimization, bunny hopping
and walking.

For a single hopping unit trajectory xhop
0 , ...,xhop

f , it has a
simple symmetry constraint due to the same mode repetition
when repeating the unit, while translating some distance d:

xhop
0 [1 : 7] = xhop

f [1 : 7] xhop
0 [0] + d = xhop

f [0]. (5)

For a single walking unit x
(r)
0 , ...,x

(r)
f ,x

(l)
0 , ...,x

(l)
f , since

the walking gait is left-right leg symmetric, we can constrain



and solve for the unit trajectory on one leg. Here, we choose to
constrain and solve for the right stance unit, translating some
distance d forward, which gives the following constraint,

q
(r)
0 [0] + d = q

(r)
f [0]

q
(r)
0 [1 : 3] = q

(r)
f [1 : 3] v

(r)
0 [1 : 3] = v

(r)
f [1 : 3]

q
(r)
0 [3 : 5] = q

(r)
f [5 : 7] v

(r)
0 [3 : 5] = v

(r)
f [5 : 7]

(6)

After getting the nominal unit trajectory x̂
(r)
0 , ..., x̂

(r)
f ,

we can construct the other nominal stance unit trajectory
x̂
(l)
0 , ..., x̂

(l)
f with a symmetric transformation, i.e., for any

i ∈ [0, N ],

q̂
(l)
i [0] = q̂

(r)
i [0] + d

q̂
(l)
i [1 : 3] = q̂

(r)
i [1 : 3] v̂

(l)
i [1 : 3] = v̂

(r)
i [1 : 3]

q̂
(l)
i [3 : 5] = q̂

(r)
i [5 : 7] v̂

(l)
i [3 : 5] = v̂

(r)
i [5 : 7]

q̂
(l)
i [5 : 7] = q̂

(r)
i [3 : 5] v̂

(l)
i [5 : 7] = v̂

(r)
i [3 : 5]

(7)

C. Multi-step Trajectory Optimization with Gait Module as
Initialization

Using repeated unit trajectories as a final planned trajectory
has drawbacks: (1) Designing feasible velocity constraints
is extremely challenging compared to positional constraints
if considering high-speed movements; (2) Inability of the
solver to find suitable solutions for unit trajectories leads to
discontinuities and dynamic infidelities, resulting in error accu-
mulation over longer trajectories. However, optimizing a unit
gait, given its physical simplicity, is relatively manageable.

Conversely, employing multi-step trajectory optimization
with naı̈ve initialization and cost functions (like effort penal-
ties, and destination costs) makes solving the optimization
problem exceedingly intractable. Yet, the advantage of this
approach lies in its ability to produce smoother, more flexible
solutions over longer horizons.

As illustrated in Fig. 2, GMOT merges the strengths of two
methods by using a sequence of unit gaits as the initialization
in multi-step trajectory optimization. This technique enables
the solver to generate smoother, more efficient multi-step
gait results, combining simplicity with long-term optimization
efficiency.

IV. EXPERIMENTS & EMPIRICAL DISCUSSION

A. Qualitative and Intuitive Evaluation Criteria

Our evaluation of bipedal gaits includes qualitative criteria
to ensure they not only meet technical metrics but also align
with human movement patterns:

• Human-like Movement: Gaits should closely resemble
how humans or other bipeds move.

• Minimal Extraneous Movements: Optimized gaits should
avoid unnecessary actuations.

• Smoothness: The movement should be fluid and contin-
uous, avoiding unnatural abrupt changes.

These criteria are assessed through reviews of simulations
and discussed below.

(a) Repeated bunny hopping units

(b) Repeated walking units
Fig. 3: Trajectory of different gaits by repeating optimized gait
units

B. Unit Trajectory Optimization

As illustrated in Fig. 3, we have visualized repeated unit
trajectories for (a) hopping and (b) walking gaits. Through
precise state constraint design, these unit gaits effectively
mimicked human movements. However, this approach was
not without issues. Notably, extraneous motions, such as leg
shaking in the walking gait, led to less smooth trajectories.
Furthermore, the process was hindered by frequent solver er-
rors due to infeasible constraints and required significant effort
in designing appropriate initial and final state constraints.

C. Multi-step Trajectory Optimization

Figure 4 displays the trajectories for various gaits optimized
through our GMOT methodology. We initialized hopping and
walking with their respective repeated unit trajectories, while
for running, we utilized repeated walking units as a starting
point.

The GMOT approach effectively adjusts for variable veloc-
ities and arrival distances, yielding trajectories that are more
aligned with human motion. These trajectories are character-
ized by minimal extraneous movements and exhibit excep-
tional smoothness. The walking and running gaits optimized
by GMOT show great promise, although the jumping trajectory
appears somewhat counter-intuitive in parts.

A notable observation is the inconsistency in step lengths.
For example, the biped might reach the intended destination
using fewer steps than planned, resulting in unnecessary ac-
tions in the remaining steps. This highlights that while GMOT
significantly improves the optimization of bipedal gaits, main-
taining control over intermediate states without additional
constraints is a challenge. Implementing such constraints is
possible but requires significant effort and meticulous cali-



(a) Bunny hopping generated by GMOT

(b) Walking generated by GMOT

(c) Running generated by GMOT

Fig. 4: Trajecotry of different gaits generated by GMOT

bration. Future research should consider exploring automated
methods for constraint generation to streamline this process.

D. Comparison of Time Efficiency

In assessing the time efficiency of various trajectory opti-
mization methods, we define an efficiency metric solving time
per collocation knot point over 104 iterations. This metric
serves as a proxy of time cost, with optimization complexity
factored out. We compared our GMOT method against a base-
line approach, which utilizes multi-step trajectory optimization
with naive initial guesses (including a static stance and uniform
positional transition towards the target). The results, as shown
in Table I, demonstrate that GMOT significantly outperforms
the baseline in solving time across all gaits.

It is important to note a few observations that are not
directly evident from the table. Firstly, for the baseline and
unit optimization methods, the number of iterations is capped
below 7 × 104 due to the computational burden becoming
prohibitive beyond this point—often resulting in an inability
to derive solutions within an hour (in Apple Silicon M1 pro).
In contrast, the GMOT method is capable of solving well-

Gait Method Traj length iters (1e4) Time (s) Efficiency

Hopping
Baseline 36 4 827 5.743

Unit 18 5 132 1.467
GMOT 36 20 335 0.465

Walking
Baseline 64 15 385 0.401

Unit 8 0.4 55 17.187
GMOT 64 20 448 0.350

RunningBaseline 64 6 296 0.771
GMOT 64 9 361 0.626

TABLE I: Time efficiency comparison among different opti-
mization methods. Efficiency is measured as the time cost per
104 iterations for each trajectory knot point

tuned trajectories even with prolonged iterations. Additionally,
the baseline method does not consistently yield aesthetically
pleasing or functionally optimal trajectories, highlighting a
limitation in its applicability for more complex gait optimiza-
tions.

E. Discussion on slack variables γ

In constrained direct collocation, slack variables γ play a
pivotal role in managing constraints and ensuring feasible
solutions. However, our experiments revealed challenges when
strictly adhering to the approach outlined in [1], particularly
in terms of trajectory optimization stability.

To address this, we introduced a novel constraint on the
slack variables. Drawing inspiration from physical principles,
we implemented a cone constraint similar to frictional forces,
expressed as |γx| ≤ µγz . This decision was driven by the
intuition that the velocity correction, represented by γ, should
be on a similar scale to the frictional forces experienced by
the biped.

V. FUTURE WORK

Our future endeavors include the formal design of experi-
ments to test our methodology against a range of quantitative
metrics in diverse scenarios. We aim to explore the application
of our initialization and constraining techniques to other direct
optimization methods, like multiple shooting, to assess their
broader applicability. Additionally, we plan to challenge our
model with more complex gaits, such as backflipping, to
further test its capabilities. A particularly promising direction
is automating constraint design to more closely mirror hu-
man locomotion intuitively, bridging the gap between robotic
movement and natural human gait patterns.
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