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ABSTRACT. We present a scalable learning paradigm for generalizing visuomotor policies to unseen environments. We
introduce GDN-ACT, or General Distillation Network prepended Action-Chunking Transformer. GDN is a trained network
that maps visual image inputs from diverse environments into some ground truth state-space information identified via human
domain knowledge. GDN-ACT is a modified version of the original ACT implementation [1], where the input into the
transformer encoder is no longer the jointly trained CNN network, but rather the pre-trained GDN network. We show that
for an example task of bimanual block grasping, the GDN-ACT trained on a single environment can generalize in multiple
complex unseen environments with similar success rates.

1. INTRODUCTION

Imitation policies learning, at its heart, is a class of supervised learning problem that attempts to map visual
observations to a sequence of output actions. When training this mapping from observation to action, past work [1][2]
has often focused on producing this correspondence in a single surrounding environment. This, though understandable,
has created limitations in the policies’ abilities to generalize when the scene of the task is altered (although not the
focus of our work, we will demonstrate this limitation in our experiments). This is, of course, to be expected, since any
supervised learning problems can only at best generalize to their training distribution.

In order to tackle this limitation, one can easily argue that by training visoumotor policies on enough visual variations
in the observation, that we could obtain a general policy that works robustly in any given environment. However,
considering the effort needed to collect training observations and actions along with the training time cost of just a single
environment, it is simply not scalable to perform this generally. In this work, we subdivide the training of visuomotor
policies on various environment into a smaller problem, by attempting to create a mapping between observation and
some task-dependent state-space information, and using this estimated state-space information, to inform the policy,
asking it to produce the next actions. By constructing an observation-to-state mapping that is expressive and accurate
enough, the training of the policy should be completely independent of visual information, and thus the policy would
only need to be trained on one singular environment, and the diverse mapping would take care of generalizing to other
environments that are unseen by the policy training.

Specifically, we modified the Action-Chunking Transformer [1], a powerful visuomotor policy, by replacing the
original image feature embedding convolutional neural network with a pre-trained observation-to-state mapping which
we call the General Distillation Network, or GDN for short. We named this combined network GDN-ACT. We will
show our construction and training of the GDN network, the construction of the prepended visuomotor policy which
we named GDN-ACT, and how training the GDN-ACT on the observation-action pairs of a single environment will
automatically see the visuomotor policy generalize to new environments.

1.1. Contributions. Our primary contribution is to present an approach to achieve zero-shot generalizations to
various novel environments for visuomotor policies trained on a single environment. We show that our approach is
able to achieve a reasonable task success rate of 61.60% across 5 environments that are unseen by the visuomotor
policy. By only training an image-to-state mapping, we show that our approach is also highly scalable.

2. BACKGROUND

2.1. Original ACT Formulation. Action Chunking with Transformers (ACT) [1] is a popular visuomotor policy for
fine manipulation tasks. It is composed of a conditional VAE with an VAE encode and an VAE decoder. The VAE
encoder takes in action sequence and joint observation and outputs z, the latent input for the VAE decoder [3]. The
VAE decoder synthesizes images from various viewpoints, joint positions, and z, and predicts action sequence. The
VAE encoder is composed of a single transformer encoder block, while the VAE decoder is composed of a transformer
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FIGURE 1. Architecture of Action Chunking with Transformers

encoder block and a transformer decoder block. The VAE encoder is discarded at inference time. The architecture of
the ACT model is shown in Figure 1.

3. RELATED WORK

Ju et al. enhanced the sim-to-real transfer of deep reinforcement learning robot control policies by leveraging
techniques such as domain adaptation, domain randomization, inverse dynamics models, and meta-reinforcement
learning [4]. Chebotar et al.’s method iteratively adapted the distribution of simulation parameters based on real-world
rollouts, thereby aligning policy behavior across simulation and reality for improved transferability [5]. Tobin et al.
applied domain randomization to generate millions of procedurally created objects for training a deep neural network,
which achieves high success rates in real-world grasping tasks despite being trained exclusively on simulated objects
[6]. However, our work aims to show that for a singular task, there exist highly scalable approaches that can generalize
imitation learning policies to novel environments with promising consistency and robustness.

4. APPROACH

4.1. Bimanual Grasping Task Setup. For this work, we specifically focused on the bimanual grasping task, where
one robot manipulator grabs a randomly placed cube on the table and passes it to the other robot manipulator. A sample
task demonstration can be found here. For each task, our approach requires humans to identify critical state-space
information that would conducive to the success of the task: this will be the output of the GDN network. For the
bimanual grasping task, we have decided that the cube’s Euclidean position would be that state-space information.
Thus, for this task, the goal of the GDN would be to construct a mapping between each image frame and the Euclidean
position of the cube in the frame.

4.2. Environment Variations for Data Collection. In order to construct an expressive GDN mapping, we modified
the original bimanual grasping MuJoco environment to have increased visual variations as shown in Figure 2. The
parameters which are modified and artifacts added will be listed in section Novel Environment Setup below.

4.2.1. Novel Environments Setup.

• Setup. Desktop, two robotic arms, single block, three light sources, ambient headlight, five desktop ornaments, two chairs,
two walls

• Color: Desktop, ornaments, chairs, walls: RGB uniformly sampled (0 to 1). Block: RGB uniformly sampled (0 to 1) while
norm difference with desk >= 0.6. Robot arms: same as original. Headlight: RGB Gaussian (mean = 0.4, std = 0.2)

FIGURE 2. Initial Configuration of Original Environment & 6 Sampled Environment. Left: Env 0.
Right: Top Row (left to right): Env 1, Env 2, Env 3; Bottom Row (left to right): Env 4, Env 5, Env 6.

https://drive.google.com/file/d/1XpJIiuyGfDb41_l2_MrOkQoFB4piD2nH/view?usp=sharing
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• Transparency(α). Desktop, robot arms: fixed to 1. Block, ornaments, chairs: uniformly sampled (0.7 to 1). Walls:
uniformly sampled (0 to 1).

• Position. Desktop, robot arms: same as original. Block: uniformly sampled, x (0 to 0.2 m), y (0.4 to 0.6 m). Lights:
Gaussian (mean = [1, -1, 1]m, [1, -1, 1]m, [0, 1, 1]m, respectively; std = [0.2, 0.2, 0.2] m). Ornament 1-4: uniformly
sampled, x [-0.4, 0.4], y [0.7, 0.9]; ornament 5: x [-0.4, -0.2], y [0.9, 1.1]. Chair 1: fixed x = -0.6 m, y Gaussian (mean =
0.8, std = 0.1); chair 2: fixed y = 1, x Gaussian (mean = 0, std = 0.4 m). Walls: Gaussian (mean = [0, 1, 0]m, [0, -0.2, 0]m,
respectively; std = [0.1, 0.1, 0.1] m).

• Diffusion & Specular. Lights: RGB Gaussian (mean = 0.3, std = 0.1)
• Direction. Desktop, robot arms, block, ornaments, chairs, walls: fixed as original. Lights: Gaussian (means = [0, -1, -1],

[-1, 1, -1], [0, -1, -1], respectively; std = [0.5, 0.5, 0.5])

4.3. General Distillation Network Formulation. The architecture of the GDN consists of a multi-layer convolution block, and a
few fully connected layers outputting a desired state dimension. In the case of the bimanual task, the GDN network takes inputs of
concatenated images of all views, and outputs a 3-vector of normalized cube positions. Figure 3 visualizes the structure of the GDN
network.

FIGURE 3. Architecture of GDN

4.4. Implementing GDN-ACT. To incorporate GDN into ACT, we discard the CNN feature embedding input into the VAE decoder
and adopt the output from GDN instead. We illustrate this change in Figure 4. We keep the rest of the ACT unchanged. The
pre-trained GDN is kept keep frozen always. During training and inference, the GDN synthesized images from multiple viewpoints
and predicts the pertinent state-space information. The input to the VAE decoder are now these state-space information, robot joint
positions, and latent value z along with their position embedding. By decoupling the ACT with jointly trained image input networks,
we have removed the ACT’s direct dependence on image pixel values. As a result, we ask the ACT to rely on the information
provided by the GDN.

FIGURE 4. Architecture of GDN-ACT

5. EXPERIMENTAL RESULTS

5.1. Experiment Results for GDN. We aim to demonstrate GDN’s capability to map images to cube positions with high accuracy.

5.1.1. GDN Data Collection. To collect training data for GDN, we ran a scripted bimanual grasping policy with different cube
position initialization and collected 300x300 images from two viewing angles and cube position data directly from the MuJoco
simulation. Each time the policy runs, we collect 200 image-position pairs spaced out equally: we call this one demonstration. We
collected two datasets: the small dataset consists of 3 environments, each with 25 demonstrations; the big dataset consists of 6
environments, each with 40 demonstrations.
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Ending Training Loss Ending Testing Loss
GDN on Small Dataset 2.43e-05 5.79e-05
GDN on Big Dataset 6.16e-06 1.16e-05

TABLE 1. Ending Training and testing losses of GDN for smaller and bigger dataset

FIGURE 5. Ground truth cube positions (left). Example output of GDN on an entire demonstration
of images: GDN on small dataset (right), GDN on big dataset (middle). Purple is the start of the
demonstration, and red is the end.

5.1.2. Training the GDN Network. We trained a GDN model on the two datasets mentioned in the previous subsection separately.
Training for 120 epochs with a batch number of 64 for both datasets, using a mean MSE loss across batch size, we were able to
obtain a loss shown in Table 1. We also included an example of the estimated cube position output of both of the GDNs on an entire
demonstration of images, compared to the ground truth cube positions in Figure 5. From these results, we see that with the bigger
dataset, the GDN training was easily able to achieve much more accurate and precise cube position outputs, which is corroborated
by a five times lower testing loss in Table 1 and a much less noisy cube trajectory in Figure 5. It is also important to note that the
testing data for both datasets include images from all environments. Therefore, this result generalizes across drastically different
environments. For the notebook of the training and testing pipeline of the big dataset for example, see here.

5.2. Experiments Results for GDN-ACT. We aim to show GDN-ACT’s potency of generalization, the consistency of generalization,
and its potential of improvement. We present the performances of GDN-ACT with GDN of different capacities for block transferring
task in the MuJoco simulation. The metric we use is success rate, which reflects the rate of successful instances that the block could
be grasped, and transferred to another manipulator.

5.2.1. Training the GDN-ACT. To train the GDN-ACT on the bimanual grasping task for a single environment, we follow an
identical procedure to training the original ACT [1], running a scripted bimanual grasping policy for 50 different cube position
initializations, which we call episodes. For each episode, we record 400 image observations, action sequences of length k, and joint
positions. The training, which is inherently a CVAE reconstruction problem, uses L1 loss to at its essence, attempt to reconstruct the
action sequence given action sequence, joint positions, learning CLS token, and observations. The model has about 80M parameters.
Training in one environment takes around 60 minutes on a single 8G RTX 3070 Ti GPU, and evaluation on one environment takes
around 30 minutes on the same laptop.

5.2.2. Potency of Generalization. To evaluate GDN-ACT’s potency of generalization, we first used the GDN model trained on the
small dataset, which was consisted of 25 demonstrations from three environments - environment 1, 2, and 3, and trained GDN-ACT
using training procedure outlined above on environment 1. Similarly, we trained the original ACT policy on environment also. Then,
both policies are test in environment 1 to 2. The results are shown in Table 2. As we can see from results shows, the original ACT
has a high success rate, but it cannot handle unseen environments. In contrast, GDN-ACT was able to handle the bimanual task
reasonably in the unseen environment. It show that pre-trained GDN brings the model potency of generalization, which shows the
potential of policy generalization training with smaller datasets. We notice GDN-ACT’s performance in the training environment is
not as good as that of ACT, and thus expected with more training instances we could improve GDN-ACT’s success rate further.

5.2.3. Consistency of Generalization. We aim to demonstrate GDN-ACT’s consistency of generalization by feeding GDN with the
big dataset. As discussed before, the larger dataset encompasses finer data from environment 1 through 6, and thus was used to train
a newer, larger version of the GDN. Again, we trained GDN-ACT with the larger GDN model on a single environment (environment
3), and evaluated this larger GDN-ACT, the smaller GDN-ACT, and the original ACT policy in environment 1 through 6. The result
of this evaluation is shown in Figure 3. Overall, the larger GDN-ACT was able to achieve an impressive average task success rate of
61.60%. Therefore, we are able to conclude that as the training data for GDN increases, we can see that GDN-ACT’s ability to

https://colab.research.google.com/drive/17IyTo8TmQG9mVY6cOtsqhj6IxWW4hsve?usp=sharing


NOVEL ENVIRONMENTAL TRANSFER OF VISUOMOTOR POLICY VIA OBJECT-CENTRIC DOMAIN-RANDOMIZATION 5

Environment 1 2
Success Rate of GDN-ACT 62% 44%

Success Rate of ACT 96% 2%

TABLE 2. Performance for the smaller GDN-ACT and ACT. For GDN-ACT and ACT, we train with
50 successful demonstrations in environment 1 and test in environments 1-2. Overall, GDN-ACT
outperforms ACT in the unseen case.

Environment 1 2 3 4 5 6
Success Rate of larger GDN-ACT 64% 76% 60% 54% 76% 38%

Success Rate of smaller GDN-ACT 60% 48% 56% 16% 26% 6%
Success Rate of ACT 6% 4% 96% 2% 4% 0%

TABLE 3. Performance for All Three Models. We train the larger GDN-ACT, the smaller GDN-ACT,
and ACT with 50 successful demonstrations in environment 3 and test in environment 1-6. Overall,
GDN-ACT performs better in unseen environments with larger GDN.

FIGURE 6. The Process of Transferring Block in Environment 6

generalize, which is training in one environment and handling other environments, increases. Thus, we expect the powerful, large
GDN can bring the model capacity to handle general cases.

We show the process of transferring the block in an example of the challenging (the block and the table have similar colors) and
unseen environment 6 in Figure 6. We give more test examples for environments 1-6 at the following link.

5.2.4. Potential Performance of GDN-ACT. We analyze the failure cases of GDN-ACT here to seek the logic behind failure and
explore the potential improvement. We notice most of the failure cases are caused by failure to grab the block at the beginning
due to small offsets. With more powerful GDNs, the end effector gets closer to the block’s location, which shows that the model
indeed is learning from the information from GDN. In contrast, the bare ACT policy makes the same movement in every test case,
which shows GDN outperforms the precious CNN backbones in conveying essential information like ’where’ and ’how’ in imitation
learning problems [7]. Thus, we can expect an even larger GDN with more cases can help eliminate the offsets.

What is more, we notice training GDN-ACT in a more challenging environment helps improve the ability to generalize. In
the previous sections, we show that in training in environment 3, where there are dazzling light and hard-to-recognize colors, the
performance of the model is better than that of training in environment 1. Thus, we guess we can improve the performance of
GDN-ACT by training more powerful GDN and training the whole model in a more challenging environment. In this way, we expect
the model could handle general cases after trained in a single environment.

6. DISCUSSION

With the shift from image to positional inputs for the VAE decoder, the accuracy of the GDN becomes critical. Despite limited
RAM space and training time limiting our data volume, we aim to enhance box positioning by increasing episodes per environment
to improve GDN-ACT’s success rate for future work. Moreover, we plan to extend GDN-ACT’s applicability to novel, unseen
environments through extensive environment training on GDN. Furthermore, we attempt to incorporate a one-shot training on the
novel environment to test both ACT and GDN ability to adapt quickly to new settings, which also reflects the model’s capability of
generalization, mirroring human learning dynamics, and could significantly refine its adaptability and performance.

https://drive.google.com/drive/folders/1UCcYCOrYfgTJAqNm6GQyLNY7QrDO36jw?usp=sharing
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